skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Igor Kukavica, Vlad Vicol"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For data which are analytic only close to the boundary of the domain, we prove that in the inviscid limit the Navier-Stokes solution converges to the corresponding Euler solution. Compared to earlier results, in this paper we only require boundedness of an integrable analytic norm of the initial data, with respect to the normal variable, thus removing the uniform in viscosity boundedness assumption on the vorticity. As a consequence, we may allow the initial vorticity to be unbounded close to the set $y=0$, which we take as the boundary of the domain; in particular the vorticity can grow with the rate $$1/y^{1-\delta}$$ for $$y$$ close to $$0$$, for any $$\delta>0$$. 
    more » « less